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'L Ours is not to reason why, just invert and multiply.

Minus times minus equals a plus, the reasons for this we need
not discuss.

The lines above are mnemonics for rules of arithmetic: (1) when
dividing by a fraction, invert and multiply; and (2) the product of two
negative numbers is positive. They suggest a sinister subtext:
arithmetic consists of rules without reasons. These mnemonics for
remembering how to perform arithmetic operations without
understanding capture the knowledge that is the aim of what Kaput
(1999) might call “Arithmetic the Institution”—mechanical procedures
without a substantive grounding in meaning or understanding. A
consequence of experiencing this arithmetic is that when students
encounter algebra, they find themselves completely unprepared for it:
algebra is not a generalization and symbolization of the arithmetic they
know, it is an alien if not alienating experience.

| would like to illustrate a very different conception of arithmetic, what
Kaput might call Arithmetic the Web of Knowledge and Skill—an
arithmetic with reasons as well as rules. This arithmetic includes
making connections among different representations and making sense
of rules as well as using them. It provides a foundation for Algebra the
Web of Knowledge and Skill in the sense that algebra can be seen as
the generalization, formalization, and symbolization of this arithmetic.

This is not the arithmetic that most teachers (and parents and school
administrators) learned. It is not the arithmetic that many experienced
teachers are used to teaching. For all of us, new views of arithmetic
are filtered through past views of arithmetic—not /ong past, but our
past. By contrasting past and recent views of arithmetic, | attempt to
make the differences between them explicit.

Arithmetic Past

% ~ Arithmetic the Institution is consistent with the idea that arithmetic

Ng algorithms are rules without reasons. Ginsburg and Yamamoto wrote in
=
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1986, “It is no exaggeration to say that the vast majority of
elementary school students are forced to spend most of their
instructional time on two topics: the number combinations and the
standard calculational algorithms. For them, arithmetic is these topics
and these only.” In this view, to know arithmetic is to know number
facts and be able to perform computational procedures correctly.!

Subtraction. Before they enter school, children begin learning to count
and recognize numbers, and most can solve very simple word problems
(see Fuson, 1988, p. 293 for details). In school, children develop a wide
variety of strategies for solving addition and subtraction problems but
these strategies are not supported by instruction, instead textbooks
present very limited concepts of addition and subtraction. Textbook
word problems focus on the interpretation of subtraction as “take-
away” and the associated solution procedure of “sum — addend =
[answer]” (Fuson, 1992). The strategy a child uses for a subtraction
problem seems to be associated with its meaning—children who view
subtraction as “take-away” tend to use a counting down strategy
rather than the less error-inducing counting up (Fuson, 1992). A
counting down solution for 15 — 8 = ? might be to take 8 from 15 by
counting 8 numbers down from 15—“14, 13, . .., 8, 7.

A different meaning that might be attached to 15 — 8 = ? is “How much
more is 15 than 87" This suggests starting with 8 and finding out how
much more is needed, which is what children do when counting up. This
meaning is not a focus of first and second grade problems in U.S.
textbooks—these focus instead on the “take-away” interpretation.
Children experience other subtraction situations and associated
solution procedures later or considerably less often (Fuson, 1988).

TKamii explains why viewing a statement like “4 + 2 = 6” as a number fact is counter
to the theory developed from the research of Piaget and his co-workers. She views such
statements as relationships between constructed quantities rather than as observable
facts. (Kamii adds that 4 + 2 can be known by counting, but that counting and knowing by
deduction are different.) She illustrates the difference between an observable fact and a
relationship with the results of the class-inclusion tasks developed by Piaget. In the
class-inclusion task, an interviewer gives a child some objects, for example, six
miniature dogs and two cats of the same size and asks a series of questions to insure that
he or she understands the meaning of “all the animals,” “all the dogs,” and “all the
cats.” Then the interviewer asks “Are there more dogs or more animals?” “More dogs”
is the answer of a typical four-year-old who responds to explanations that there are
more animals with puzzled looks (Kamii & DeClark, 1985, pp. 12, 67). Kamii explains
“Observation of facts is one thing, and the logico-mathematization of what is observable
is quite another.” (For further discussion of this issue see Kamii & DeClark, 1985, pp.
64-73.) Post-Piagetian research suggests that such responses are heavily dependent on
language and context (see Donaldson, 1990).



First and second grade textbooks have many tasks like these (Fuson,
1988):

3+2="7
15-8=7

Both tasks like these and the interpretation of subtraction as “take-
away” focus on the interpretation of the equal sign as “results in”
rather than “the same as.”

Later, students learn the multi-digit subtraction algorithm (subtraction
with “borrowing”). After extensive analysis of student errors,
VanlLehn wrote, “Most elementary students have only a dim conception
of the underlying semantics of subtraction, which are rooted in the
base ten representation of number. When compared to the procedures
they use to operate vending machines or play games, subtraction is as
dry, formal, and disconnected from everyday interests as the
nonsense syllables used in early psychological investigations were
different from real words” (1983, p. 201).

Algebra. As they learn arithmetic, students find that when they add or
multiply two numbers, the result is the same no matter which number
is first. Symbolized algebraically, these observations are the
commutative laws for addition and multiplication:?

a+b=>b+a and ab = ba.

Although beginning algebra students may have made the generalization
that “the order in which you add or multiply two numbers doesn’t
matter,” they often see these algebraic formalizations as alien. In
these equations the equal sign expresses equivalence. The textbook
examples above show that arithmetic syntax for the equal sign is quite
different—it is a “do-something signal” and “the right side of the equal
sign should indicate the answer” (Kieran, 1990, p. 100). The equations
expressing the commutative laws don’t have “an answer” on the right
side of the equal sign, instead the equations themselves are objects
expressing information about numbers. To a beginning algebra student,
the equal sign says “Do something,” but there is nothing to do.

2More formally, Vavb(a + b= b + a) and VaVb(ab = ba). One might be even more
formal and specify the range of the quantifiers.



Viewing the equal sign as a “do-something” signal persists into college
(Kieran, 1990). Students sometimes put “=" in situations where
mathematicians would write “=>" (an implication sign). For instance,
college students sometimes write:

g(x) = x2 = g'(x) = 2x
instead of:
g(x) = x2 => g'(x) = 2x.

This is an example of generalizing from arithmetic experiences—but
though these generalizations make sense in terms of the arithmetic
syntax derived from the meaning of the equal sign as “results in,” they
do not if the symbols have their standard mathematical meanings.

In this view, arithmetic is about number computations, and algebra is
about solving equations with letters; arithmetic is about processes,
and algebra is about objects. Arithmetic and algebra are two separate
layers of a cake (Kaput, 1999, 1995; Steen, 1990)—and though there
is something cookbook about both of them, they've been made from

_ different recipes.

Geometry. Geometry is often the next layer of the cake. Lampert
(1986, p. 327) points out that fourth graders have difficulty
separating ideas about length and area adequately. Research on
geometric representations suggests that students continue to have
trouble with length and area. Clinical studies of ninth graders (Fuys,
Geddes, & Tischler, 1988, p. 113) revealed two common
misunderstandings “(1) thinking of area as related to angle sums and
(2) confusing area with perimeter.” The latter sometimes led students
to misapply the formulas for rectangle area and perimeter that they
had memorized. Kieran (1990) summarizes studies documenting North
American middle school and high students’ difficulties with
representations that use length and area. These difficulties may well
be related to students’ difficulties with graphical representations of
functions. Not surprisingly, college students seem “reluctant to
visualize” (Eisenberg & Dreyfus, 1991). Eisenberg and Dreyfus (1991)
say, )

The work of [Ferrini-]Mundy, Dick, Monk, Swan, and Vinner

supports the preliminary finding by the authors that
[calculus] students have a strong tendency to think
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algebraically rather than visually. Moreover, this is so even
if they are explicitly and forcefully pushed towards visual
processing. . . . What is needed to generate a visual
understanding which would include the ability to solve
problems utilizing both visual and analytic thinking in
concordance with one another, and help students feel at
ease in both domains? (p. 29)

Connections between algebra and geometry are fundamental in
calculus. For example, one important idea is: approximating the area
under a curve by a collection of rectangles, writing the area of those
rectangles as an algebraic expression, and understanding how changes
in the algebraic expression are related to geometric changes in the
corresponding graphical representation. Variants of this idea appear in
the Fundamental Theorem of Calculus, methods of approximating
integrals, and methods of calculating volumes.

Compared with the abundance of research on children’s counting and
computation, little effort seems to have been devoted to children’s
geometrical thinking and its relationship with instruction (Hershkowitz,
1990, p. 93). The van Hiele Model of Thinking in Geometry Among
Adolescents Project (Fuys, Geddes, & Tischler, 1988) investigated
three K-8 textbook series and found that most textbook exercises
related to geometry involved activities in which “the student identifies,
names, compares and operates on geometric figures . . . according to
their appearance” rather than analyzing figures, logically interrelating
their properties, or other more advanced activities. Visualization and
geometry are not considered important parts of mathematics,
particularly elementary mathematics.

This brief sketch of precollege mathematics as it is often conceived
illustrates some of the discontinuities between Arithmetic the
Institution and Algebra the Institution, between students’ preschool
and school experiences, and between students’ precalculus and
calculus experiences, namely that:

e Children enter school knowing how to solve simple word
problems, but
early arithmetic does not build on what students know.

» Early subtraction focuses on the “take-away” interpretation,

and
subtraction with borrowing has little semantic meaning.
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* |In arithmetic, the equal sign means “do something,” but
in algebra, the equal sign means “the same as.”

* Geometry is not connected with arithmetic or algebra, but
connections between geometry and algebra are an important
aspect of calculus.

Arithmetic Present

For most adults educated in the United States, the arithmetic I've
sketched is Arithmetic Past. For most people not directly involved with
mathematics education, this arithmetic is not the ghost of a departed
quantity—it is very much Arithmetic Present.

For many involved with mathematics education, arithmetic is in a state
of transition. The National Council of Teachers of Mathematics has
drawn on research such as that I've described in making its 1989
Curriculum and Evaluation Standards for School Mathematics. However,
the U.S. curriculum as reflected in recent textbooks is “a splintered
vision” (Schmidt, McKnight, & Raizen, 1997).

I now turn to the arithmetic that for many of us is Yet To Come.

Arithmetic Yet To Come

Pupil: And | to youre authoritie my witte doe subdue,
whatsoever you say, | take for true.

Master: Thoughe | mighte of my Scholler some credence require,
yet except | shew reason, | do not it desire.

Robert Recorde, The Grounde of Artes (arithmetic book published in
1540)
(quoted in Cajori, 1957, p. 184)

I'd like to contrast the arithmetic of number facts and computational
procedures with sketches of a very different arithmetic in which
students:

e explain their reasoning verbally and symbolically;
* make sense of different solutions;

Q 6
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* make sense of computational procedures;
* make connections between different representations.

- The examples that follow are meant to be illustrations of what it might
mean to know arithmetic rather than prescriptions for teaching. | do
not discuss the (considerable) pedagogical knowledge and skill that are
necessary to make these situations occur in classrooms.

Several of my examples are drawn from the research of Liping Ma who
has been an elementary student, elementary teacher, and education
researcher in China. She points out that “knowing arithmetic” has very
different meanings in China and the United States. For example, in
China the distributive law is first learned in terms of
arithmetic—students learn numerical versions of a(b + ¢) =

ab + ac. Associated with this different conception of arithmetic is a
different relationship between arithmetic and algebra. As a student,
Ma found arithmetic much harder than algebra and thinks this may be a
common experience for Chinese students. In Chinese “algebra” means
‘replace numbers with letters.” The characters for the word algebra
are “number” and “replace” (Ma, personal communication, September
18, 1997). This suggests that in China, among many other differences,
algebra is closer to being generalized arithmetic than it is in the United
States. As documented by numerous cross-national studies, this
curricular approach does not hinder development of computational
skills (for a review see Cai, 1995). Chinese students out-perform U.S.
students by a wide margin on tests of computation.

Verbal and symbolic reasoning in subtraction. Teacher Li (a
pseudonym) described a particular stage in teaching her students
subtraction:

We start with the problems of a two-digit number minus a
one-digit number, such as 34 — 6 =. | put the problem on
the board and ask students to solve the problem on their
own. . . . After a few minutes they finish. | have them
report to the class what they did. They might report a
variety of ways. One student might say, “34 - 6, 4 is not
enough to subtract 6. But | can take off 4 first, get 30.
Then | still need to take 2 off because 6 = 4 + 2. | subtract
2 from 30 and get 28. So, my way is

34-6=34-4-2=30-2=28"



Teacher Li, like many experienced Chinese, Japanese, and Taiwanese
elementary teachers, tends to focus on student responses to the
problems she poses (Ma, 1999; Stevenson & Stigler, 1991; Stigler,
Fernandez, & Yoshida, 1996), so it is not surprising that she was able
to describe possible responses in detail. Here the hypothetical student
has decomposed 6 as 4 + 2 and has correctly distributed -1, i.e.
rewritten 34 — 6 as

34 - 4 — 2. An intermediate step might be:

34 -4-2=(34-4)-2.

Thinking of 34 -4-2as 34 + (-4) + (-2) suggests why this
example could be part of the foundation for the algebraic associative -
law for addition:

a+b+c=(a@a+b)+c=a+(b+c).
Teacher Li's description continues:

Another student who worked with sticks might say, “When
| saw that | did not have enough separate sticks, | broke
one bundle. | got 10 sticks and | put 6 of them away. There
were 4 left. | put the 4 sticks with the original 4 sticks
together and got 8. | still have another two bundles of
tens. Putting the sticks left all together, | had 28.” Some
students might report. . . . “We have learned how to
compute 14 -8, 14 -9, why don’t we use that
knowledge? So, in my mind | computed the problem in a
simple way. | regrouped 34 into 20 and 14. Then |
subtracted 6 from 14 and got 8. Of course | did not forget
the 20, so | got 28.” (Ma, 1999)

One way of writing the third method might be (Ma, personal
communication, September, 18, 1997):

34 =20 + 14
%34-6=20+14-6
14-6=28
% 34 -6 =20 + (14 - 6)
=20+ 8
= 28.



Ma adds that teachers like Li ask their students, even first and second
graders, to make such mathematical arguments.

This computation (and the decomposition of 6 into 4 + 2 in the first
method) illustrates several ideas. One is that of rewriting an
expression in an equivalent, but more convenient, form—something
often done in algebra. In this computation, rewriting 34 as 20 + 14 is
more convenient because the hypothetical student knows how to
compute 14 — 6. This computation also uses substitution: 8 is
substituted for (14 — 6). All three methods involve multi-step
calculations in which the equal sign (written or implicit) acts more as
an equivalence than a “do-something” signal and the right side of the
equal sign does not always indicate the answer.

The third method might also be written like this:
34-6=(20+14) -6 =20+ (14— 6) = 20 + 8 = 28.

Generalizing the transformation involved in going from the second
equality to the third yields the associative law for addition.

Making sense of multi-digit multiplication algorithms symbolically. In
sixth grade Rebecca Corwin (1989) invented a checking method for the
standard multiplication algorithm. Her method always gave correct
results but was banned by her teacher.
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34 34

x23 x23
102 92
680 690
782 782
Standard algorithm Corwin’s method

The first partial product of the standard algorithm is 3 x 34 = 102
(first digit of the multiplier times the multiplicand). The second partial
product is 20 x 34 =680 (second digit of the multiplier times the
multiplicand).

In Corwin’s method, the first partial product is 4 x 23 =92 (first digit
of the multiplicand times the multiplier). The second partial product is
30 x 23 =690 (second digit of the multiplicand times the multiplier).
These partial products occur when the standard algorithm is used—on
the problem 23 x 34, not 34 x 23. Because multiplication is
commutative, 23 x 34 is equal to 34 x23, so Corwin’s method
gives the same result as the standard algorithm.

U.S. elementary teachers sometimes view the zero in the second
partial product of the multiplication algorithm as a place-holder and
sometimes as a distraction (Ma, 1999). Sometimes students are
taught the standard algorithm without the zero:

34
x23
102
68
782

Teacher Chen (a pseudonym), an experienced Chinese elementary
teacher, suggested helping students to understand the multiplication
algorithm by guiding them to find all the possible ways in which the
columns may be lined up (Ma, 1999). Applying his idea to the previous
example would lead students to consider the following:

11 10




34 34 34 34

x23 x23 x23 x23
69 92 102 68

92 69 68 102
782 782 782 782

Lampert (1986, pp. 330-337) describes a symbolic representation she
used in her fourth grade class to make sense of the standard
multiplication algorithm. In this representation the calculation is:




34 ———>30+4

X 23
690 <— 30 x 23
4+ 92 < 4 x 23
782

As Lampert’s representation suggests, the equivalence of Corwin’s
method and the standard algorithm (with or without the zero) can be
explained using the distributive law. The formulation of the distributive
law used in the United States is:
a(b+c)= ab + ac.

Decomposing 23 as 20 + 3 and distributing the 34 yields:

(34)(23) = (34)(20 + 3) =(34)(20) + (34)(3).
Chinese elementary students would recognize the first equality as
justified by the distributive law (Ma, 1999). This form shows the partial
products 34 x 20 = 680 and 34 x 3 = 102 that are obtained from the
standard algorithm—and shows the reason for the zero.
Decomposing 34 as 30 + 4 gives:

(30)(23) + (4)(23) = (30)(20 + 3) + (4)(20 + 3).
Distributing the 30 and the 4 yields:

(30)(20) + (30)(3) + (4)(20) + (4)(3).

Collecting terms (using the distributive law):

(30)(20 + 3) + (4)(20 + 3) = (30)(23) + (4)(23).
This shows the partial products 30 x 23 = 690 and 4 x 23 = 92 of

Corwin’s method.

Making sense of the multiplication algorithm visually: Connecting
symbolic and visual representations. Lampert uses drawings of objects

12



in groups (e.g., butterflies in jars or astronauts on planets) to help
students make sense visually of the distributive law and multiplication.
Students familar with area and perimeter could also use the following
geometric decompositions corresponding to the equations above.
(Note: Graphics are not to scale.)
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34

34 x 23 23
34
34 x 20 = 680
1st partial product of standard algorithm 20
+
34 x 3 =102 3
2nd partial product of standard algorithm

4 + 30
4 x 20 = 30 x 20 = 600 20
80 +
3
4x3=12 30 x 3 =90
4 + 30
4 x 23 = 30 x 23 = 690
92 1st partial product of 23
2nd partial Corwin’s method
product of
Corwin’s
method

Making sense of negative number multiplication symbolically. \n 1797,
the fourteen-year-old Marie-Henri Beyle (who later became the novelist
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Stendhal) loved mathematics, but had trouble understanding
multiplication with negative numbers.

In my view, hypocrisy was impossible in mathematics and,
in my youthful simplicity, | thought it must be so in all the
sciences to which, as | had been told, they were -applied.
What a shock for me to discover that nobody could explain
to me how it happened that: minus multiplied by minus
equals plus

(= x — = +)! (Stendhal, 1958, pp. 257-258)

Multiplication with negative numbers can be explained using the
distributive law. Before tackling Stendhal’s problem of the product of
two negative numbers, it helps to see what the product of a positive
and a negative number should be. (As Klein (1908/1945, p. 27) points
out, in this use of the distributive law we are extending rules for whole
numbers to the case of negative numbers.) Take any numbers, say, 2
and 3.

3+-3=0,s02times (3+ -3)isalso0, i.e.,

(2)(3 + =3) = (2)(0) = 0.
Using the distributive law on the left side of the equation above:

(2)(3 +-3) = (2)(3) + (2)(-3) = 0

6 + (2)(-3) = 0.
So (2)(-3) must be -6, i.e. (2)(-3) = —(2)(3).

The same idea works for seeing what the product of two negative
numbers should be.

3+-3=0, so-2tmes (3 +-3)isalso0, i.e.,
(=2)(3 + =3) = (-2)(0) = 0.

Using the distributive law on the left side of this equation yields
(=2)(3 + -3) = (-2)(3) + (-2)(-3) = 0

-6 + (-2)(-3) = 0.
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So (—2)(-=3) must be 6.

This justification can only be used if students are familar with the
arithmetic version of the distributive law. By not establishing a basis
for explanations like these, Arithmetic Past makes it difficult if not
impossible for students to be given a reason why the product of two
negative numbers is positive.

Making sense of negative number multiplication visually. Negative
number multiplication can also be given a geometric explanation.
Consider (5 — 2)(5 - 2).

6-2)(5-2)=(3)3) =9
In terms of area, this might be visualized in terms of a square with

sides of length 5, hence area 25. The square can be dissected in
various ways, among them:

5 5-2 2
Subtracting the shaded areas yields the lower left area (5 — 2)(5 — 2)
except that the overlap has been subtracted twice, so the area of the
upper right square, (2)(2), should be added to the result, i.e.,

(5 = 2)(5 = 2) = (5)(5) - (2(3) = (2)(5) + (2)(2).

i
{

'
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5-2 2
Using the distributive law to expand (5 — 2)(5 — 2) yields:
(5 = 2)(5 - 2) = (5)(5) - (2)(5) — (2)(5) + (-2)(-2).
Comparing the two expressions yields:

(2)(2) = (-2)(-2).

Concluding discussion

Arithmetic the Institution and Algebra the Institution have two major
discontinuities. The first occurs when children enter school: Addition
and subtraction tend to be taught in a manner that ignores students’
strategies and focuses on a limited interpretation of subtraction. The
second discontinuity is the change in the interpretation of the equal
sign from arithmetic to algebra. Moreover, visual representations
involving area and perimeter are a peripheral part of Arithmetic Past.
Unless students learn about this topic on their own, they are left to
struggle when they encounter sophisticated manifestations of area
and perimeter in graphing and calculus. Perhaps most damaging of all,
Arithmetic Past is a collection of rules without reasons. Making sense
of those rules is not a part of what it means to know Arithmetic Past.

By denying them access to important mathematical ideas, Arithmetic
Past has bound many students in chains of ignorance, and sometimes
fear, to which algebra and calculus often add links. Many of those
students have become adults who, understandably, have not reflected
on their arithmetic past. Their reactions to reform sometimes suggest
that they are haunted by the Ghost of Arithmetic Past in their
interpretations of Arithmetic Yet To Come and in their expectations
for children’s learning. The Ghost of Arithmetic Past also casts its
shadow over teachers, dimming their expectations of students.

Are these the shadows of things that Will be, or are they
the shadows of what May be, only? . . . courses will

17
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foreshadow certain ends, to which if persevered in, they
must lead. But if the courses be departed from, the ends -
will change. (Dickens, 1843/1956, pp. 149-150)

Arithmetic Past need not be the shadow of what will be. Instead:

¢ arithmetic can be reconceived to include reasoning, sense-
making, and connecting representations (both symbolic and

visual);

 algebra can be conceived as a generalization, symbolization,
and formalization of this arithmetic, thus this arithmetic
provides a foundation for algebra;

¢ access to algebra can be democratized, because algebra
understanding is not then limited to the few who have built a
foundation for it without the help of the official curriculum.
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